

USN						BPHYC102/202

First/Second Semester B.E./B.Tech. Degree Supplementary Examination, June/July 2024

Applied Physics for Civil Engineering Stream

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Define simple harmonic motion. Give example. Write the differential equation for SHM and explain the terms.	05	L2	CO1
	b.	With a neat diagram, explain the construction and working of Reddy tube	10	L2	CO1
		and hence mention any four applications of shock waves.			
	c.	A free particle is executing SHM in a straight line. The maximum velocity	05	L3	CO3
		it attains during any oscillation is 62.8 m/s. Find the frequency of			
		oscillation if its amplitude is 0.5 m.			
		OR			
Q.2	a.	What are forced oscillations? Derive the expression for amplitude of	10	L2	CO1
		vibration of a body undergoing forced vibrations.			
	b.	Define Mach number and hence give the classification of waves on the	05	L2	CO ₁
		basis of Mach number.			
	c.	A vibrating system of natural frequency 500 CPS is forced to vibrate with a	05	L3	CO5
		periodic force/unit mass of amplitude 100×10^{-5} N/kg in the presence of a			
		damping/unit mass of 0.01×10^{-3} rad/s. Calculate the maximum amplitude			
		of vibration of the system.			
		Module −2			
Q.3	a.	Define elongation strain coefficient, compression strain coefficient and	06	L2	CO1
		Poisson's ratio. Mention the equation for the same.			
	b.	Derive the relation between Young's modulus rigidity modulus and	09	L2	CO1
		Poisson's ratio.			
	c.	Calculate the extension produced in a wire of length 2m and radius	05	L3	CO ₅
		0.013×10^{-2} m due to a force of 14.7 N applied along its length. Given			
		$Y = 2.1 \times 10^{11} \text{ Nm}^{-2}$.			
		OR			
Q.4	a.	What are beams? Discuss I – shaped beam in brief and hence mention its	09	L2	CO1
		advantages, disadvantages and uses.			
	b.	What is fracture? Distinguish between brittle fracture and ductile fracture.	06	L2	CO1
	c.	Calculate the force required to produce an extension of 1 mm in steel wire	05	L3	CO5
		of length 2m and diameter 1 mm. Given $Y = 2 \times 10^{11} \text{ N/m}^2$.			
		Module – 3			
Q.5	a.	Define reverberation time. Based on the assumptions made by Sabine	09	L2	CO2
		deduce the expression for reverberation time.			
	b.	Discuss the remedial measures taken to improve the acoustic quality in the	06	L2	CO2
		auditorium. 🗸 🧳			
	c.	A class room is having dimensions $20 \times 15 \times 5$ m ³ . The reverberation time	05	L3	CO2
		is 3.5 s. Calculate total absorption of surface and average absorption			
		coefficient.			
		1 of 2			

		BI	РНҮ	C102	2/202
		OR			
Q.6	a.	What is photometry? Explain different photometric quantities.	07	L2	CO2
	b.	Define absorption coefficient and absorption power. Explain in detail how	08	L2	CO2
		the absorption coefficient of a material is measured using Sabine's formula.			
	c.	A lecture hall has volume 600 m ³ . Its floor area is 120 m ² , walls area is	05	L3	CO2
		220 m ² and ceiling area is 120 m ² . The walls, floor and ceiling are covered			
		by materials of absorption coefficient 0.03, 0.06 and 0.80 respectively.			
		Calculate reverberation time.			
		Module – 4			
Q.7	a.	Expand the term LASER and discuss the interaction of radiation with	07	L2	CO3
		matter.			
	b.	With neat diagrams, explain the construction and working of semiconductor	08	L2	CO3
		LASER diagram. Mention the applications of semiconductor laser.			
	c.	A pulsed laser emits photons of wavelength 780 nm with average	05	L3	CO3
		power/pulse 20 mW. Calculate the number of photons contained if each			
		pulse duration is 10×10^{-9} s.			
		OR			
Q.8	a.	Define angle of acceptance and numerical aperture (NA). Derive the	09	L2	CO3
		expression for NA.			
	b.	Explain the construction and working of fiber optic temperature sensor.	06	L2	CO3
	c.	An optical fiber has a core material with RI 1.55 and its cladding material	05	L3	CO3
		has a RI of 1.50. Calculate its numerical aperture and angle of acceptance.			
		Module – 5			
Q.9	a.	Discuss the classification of Earthquakes.	09	L2	CO4
	b.	Discuss the engineering structures to withstand earthquakes.	06	L2	CO4
	c.	Calculate the intensity of the earthquake of magnitude 6.5. Assume the base	05	L3	CO4
		intensity is I ₀ .			<u></u>
		OR			
Q.10	a.	Describe various causes for land sliding.	08	L2	CO4
	b.	Write a note on forest fires and fire protection.	07	L2	CO4
		m : : 0 1 1 1 1 100 1 1 1 1 100 1			

* * * * *

The intensity of one earthquake is 100 times the intensity of the other. If the

magnitude of the first earthquake is 8.9, estimate the magnitude of the

c.

05

L3

CO4