

USN												BPHYC102/202
-----	--	--	--	--	--	--	--	--	--	--	--	--------------

First/Second Semester B.E./B.Tech. Degree Examination, Nov./Dec.2023 Applied Physics for Civil Engineering Stream

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

2. VIC Formula Hand Book is permitted.
3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	What are damped oscillations? Set up the differential equation for damped	10	L2	CO1
		oscillations. And assuming the expression for solution of the different			
		equation, explain the three cases of damping briefly.			
	b.	What is Mach number and Mach angle? Distinguish between subsonic, supersonic	05	L2	CO1
		waves and transonic on the basis of Mach number.			
	c.	A 20 gm oscillator with natural angular frequency 10 rad/sec is vibrating in a	05	L3	CO ₅
		damping medium. The damping force is proportional to the velocity of the			
		vibrator. If the damping co-efficient is 0.17, how does the oscillations decay?			
0.1		OR	10	1.2	CO1
Q.2	a.	Define the term stiffness factor. And explain the physical significance.	10	L2	CO ₁
		Derive the expressions for equivalent force constant for two springs in			
		series and parallel.	0.0	Τ.	CO1
	b.	Explain the construction and working of Reddy Shock tube. The distance between the two pressure sensors in a shock tube is 150 mm. The	06	L2	CO1
	c.	time taken by the shock wave to travel this distance is 0.3 mS. If the velocity of	04	L3	CO ₁
		sound under the same condition is 340 ms ⁻¹ . Find the Mach number of the Shock			
		wave.			
		Module – 2	1		
Q.3	a.	Explain the nature of elasticity with the help of stress strain diagram.	06	L2	CO ₂
	b.	Define three types of moduli. Derive the relation between K, Y and σ for an	09	L2	CO2
		elastic body.			
	c.	Calculate the extension produced in a wire of length 2 m and radius	05	L3	CO5
		0.013×10^{-2} m due to a force of 14.7 Newton applied along its length. Given,			
		Young's modulus of the material of the wire $Y = 2.1 \times 10^{11} \text{ N/m}^2$.			
		OR			
Q.4	a.	Define Poisson's Ratio and derive the relation between Young's modulus,	08	L2	CO ₂
		Rigidity modulus and Poisson's ration.			
	b.	Explain following terms: (i) Beam (ii) Bending Beam. (iii) Ductile fracture	08	L2	CO2
		(iv) Brittle fracture (v) Fatigue			
	c.	Calculate the extension produced in a wire of length 2 m and radius	04	L3	CO ₅
		0.013×10^{-2} m due to a force of 14.7 Newton applied along its length. Given,			
		Young's modulus of the material of the wire, $Y = 2.1 \times 10^{11} \text{ N/m}^2$.			
		Module – 3			
Q.5	a.	Define the terms reverberation and reverberation time in acoustics. And	08	L2	CO2
		mention the basic requisites of an acoustically good auditorium.			
	b.	Derive Sabine's formula for reverberation.	08	L2	CO2
	c.	Explain the terms Reflectance and Transmittance.	04	L2	CO2
		OR			
Q.6	a.	Write a note on noise and a few of its impacts and preventive measures in	08	L2	CO2
		multi-storied buildings.			

	BE	PHY	C102	2/202
b.	Explain Lambert's cosine law and inverse square law. Mention few relevant points	08	L2	CO ₂
	for both the laws.			
c.	If a university lecture hall (15 m×8 m×3 m) is heavily damped with absorption	04	L3	CO ₂
	co-efficient 0.3. Calculate its reverberation time.			

Module – 4								
Q.7	a.	Discuss the possible ways through which radiation and matter interaction	06	L2	CO3			
		takes place.						
	b.	With a neat diagram, derive an expression for numerical aperture in an optical	09	L2	CO3			
		fiber.						
	c.	The average output power of laser source emitting a laser beam of wavelength	05	L3	CO5			
		6228 Å is 5 mW. Find the number of photons emitted non-second by the lesson						
		6328 A is 5 mW. Find the number of photons emitted per second by the laser						
		source.						

		OR			
Q.8	a.	Explain the construction and working of semiconductor laser.	08	L2	CO3
Q.0	b.	Explain the construction and working of semiconductor laser. Explain the principle and working of Fiber optic displacement sensor and Fiber	08	L2	CO3
	υ.	optic temperature sensor with neat diagrams.	00	LL	CO3
	c.	The refractive indices of core and cladding are 1.50 and 1.48 respectively in an	04	L3	CO5
		optical fiber. Find the numerical aperture and angle of acceptance.			
	•	Module – 5	•		
Q.9	a.	What is an earthquake? Define the terms focus, epicenter and seismic	05	L2	CO4
_		waves.			
	b.	What is a Land slide? Explain its effects and civil engineering solutions for	10	L2	CO4
		protection from land slides.			
	c.	In a diffraction grating experiment, the laser light undergoes second order	05	L3	CO5
		diffraction. With diffraction angle of 7.68°. The grating constant is 10 ⁻⁵ m and the			
		distance between the grating and laser source is 1 m, find the wavelength of laser			
		light.			
	1	OR	г -		
Q.10	a.	What is TSUNAMI? Explain the causes risks and mitigation measures.	10	L2	CO4
	b.	What is Richtor scale? Explain the safety precautions against an earth quake.	05	L2	CO4
	c.	In an optical fibre experiment, the laser light propagating through an optical fiber	05	L3	CO ₅
		made a spot diameter of 2.05 cm on the screen. The distance between the end of			
		the optical fibre cable and the screen is 2 cm. Calculate the numerical aperture and			
		the angle of acceptance.			

		6			
		2 of 2			
		2 of 2			
		2 01 2			
		G.			