

USN												BPHYM102/202
-----	--	--	--	--	--	--	--	--	--	--	--	--------------

First/Second Semester B.E./B.Tech. Degree Examination, June/July 2024 Applied Physics for ME Stream

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M: Marks, L: Bloom's level, C: Course outcomes.

3. VTU Hand book is permitted.

		Module – 1	M	L	C		
Q.1	a.	Define Spring Constant. Obtain an expression for equivalent force constant	8	L2	CO1		
		for two springs in series and parallel combination. What is the expression					
		for time period of oscillation in above cases?					
	b.	What is Mach Number? Distinguish subsonic ultrasonic, supersonic and	8	L2	CO ₁		
		hypersonic flow.					
	c.	In Reddy tube experiment, it was found that the time taken to travel	4	L3	CO ₁		
		between the two sensors is 195 microseconds. If the distance between the					
		two sensors is 100mm. Find Mach Number. Given velocity of sound under					
		the same conditions is 340m/s.					
		OR OR		•			
Q.2	a.	Obtain a differential equation for a body undergoes forced oscillation and	8	L2	CO ₁		
		mention the expression for amplified and phase of oscillation.					
	b.	What are shock waves? Describe the construction and working of Reddy	7	L2	CO ₁		
		shock tube with neat diagram.					
	c.	A spring undergoes extension of 5cm for a load of 50gm. Find its frequency	5	L3	CO ₅		
		of oscillation. If it set for vertical oscillation with a load of 200gm, attached					
		to its bottom. Ignore the mass of the spring.					
Module – 2							
Q.3	a.	Explain the types of strain. Explain the nature of elasticity with the help of	8	L2	CO ₁		
		stress- strain diagram.			~~.		
	b.	Define Poisson's ratio, Young's modulus, Bulk modulus. Derive the	8	L2	CO ₁		
		relation for 'Y', 'η' and 'σ'.					
	c.	Calculate the force required to produce an extension of 3mm in steel wire	4	L3	CO ₁		
		of length 3m and diameter 2mm ($y = 20 \times 10^{10} \text{N/m}^2$).					
		OR	1				
Q.4	a.	What is bending moment? Derive the expression for the bending moment in	8	L2	CO ₁		
		terms of moment of Inertia. Hence, arrive the expression for a bending					
		moment of circular and rectangular cross sections.					
	b.	Discuss the different types of beams and explain 'I' section Girder and their	8	L2	CO ₁		
		Engineering applications.			~~1		
	c.	A metal wire of length 1.5m is loaded and an elongation of 2mm is	4	L3	CO1		
		produced. If the diameter of wire is 1mm. find the change in diameter of					
		wire when elongated (where $\sigma = 0.24$).					
	1						
	1	Module – 3	-				
Q.5	a.	What is Seeback effect? Explain variation of Thermo-emf with temperature	8	L2	CO ₂		
		and obtain the relation between inversion temperature and neutral					
		temperature.					

	b.	What are thermo couples? Explain laws of thermo – electricity with neat sketch.	8	L2	CO2
	c.	EMF of a thermo couple is 1200 microvolts when working between 0°C and 100°C. Its neutral temperature is 300°C. Find the value of 'a' and 'b' for it.	4	L3	CO2
		ior it.			
		OR			•
Q.6	a.	What are thermo-eletric materials? Explain Low, mid and high temperature thermo electric materials and mention their applications.	8	L	СО
	b.	Describe the construction and working of Thermo electric generator and mention the applications of it.	8	L	СО
	c.	The emf in microvolts of a thermocouple one junction of which is at 0° C is given by $e = 1600T - 4T^{2}$, where T° C is the temperature of hot junction. Find neutral temperature and Piltier co-efficient.	4	L	СО
		Module – 4			
Q.7	a.	Explain the construction and working of porous plug experiment with neat diagram.	8	L2	CO3
	b.	Describe the Lindey's air liqufier.	8	L2	CO3
	c.	Calculate the inversion temperature of gas. Given $a = 0.244$ at m L^2/moL^2 , $b = 0.027$ L/moL and $R = 0.0821$ Latm/K/mol.	4	L3	CO3
		OR			
Q.8		Explain Joule-Thomson effect. Derive	8	L2	CO3
Q.o	a.	$\Delta T = \left[\frac{P_1 - P_2}{C_p}\right] \left(\frac{2a}{RT} - b\right).$	o	LZ	COS
	b.	What is Cryogenics? Explain the applications of cryogenics in aerospace and food processing.	8	L2	CO3
	c.	A platinum resistance thermometer has resistance of 2Ω and 0° C and 3Ω at 100° C. What will be the temperature when resistance indicates 5Ω .	4	L3	CO3
		Module – 5			
Q.9	a.	Explain the construction and working of X-ray diffractometer and discuss the Scherrer's method for determining Crystallite size.	8	L2	CO4
	b.	Describe construction and working of SEM and mention its applications.	8	L2	CO4
	c.	An X-ray undergoes First order Bragg's diffraction by the crystal with 'd' spacing 3.6 Å at a glancing angle 12° calculate wavelength of X-rays.	4	L3	CO4
					<u> </u>
		OR		T = -	·
Q.10	a.	What are Nonomaterials and Nano composites? Discuss their classification based on their dimensional constraints.	8	L2	CO4
	b.	Describe the principle, construction and working of X-ray photo Electron spectroscopy and mention its advantages and applications.	8	L2	CO4
	c.	Determine the Crystallite size using Scherrer's relation. Given $\lambda = 1.5 \text{Å}$, $2\theta = 35^{\circ}$ and $k = 0.94$ peak full width half maxima = 0.5°.	4	L3	CO4
		20 33 and K 0.77 peak full within han maxima = 0.3.		l	İ

* * * * *