

USN												BPHYM102/202
-----	--	--	--	--	--	--	--	--	--	--	--	--------------

First/Second Semester B.E./B.Tech. Degree Examination, Nov./Dec.2023 Applied Physics for ME Stream

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	What are damped oscillations? Discuss the theory of damped oscillation	08	L2	CO1
		and three possible cases for damped oscillations.			
	b.	What are shock waves and give the characteristics of shock waves. Discuss the	07	L2	CO1
		construction and working of Reddy's shock tube.			~~-
	c.	In the spring constant experiment, a mass of 0.7 kg causes an extension of 0.05 m in a spring and system is set for oscillations. Find Force constant of spring and	05	L3	CO5
		Angular frequency.			
		OR			<u> </u>
Q.2	a.	What is Simple Harmonic Motion and give the differential equation of	08	L2	CO1
C		Simple Harmonic Motion. Obtain the expression for effective spring			
		constant and Time Period for two springs connected in parallel.			
	b.	What are forced oscillations? Discuss the conditions for resonance and explain the	07	L2	CO1
		sharpness of resonance.			
	c.	Calculate the maximum amplitude of vibration of a system whose natural	05	L3	CO5
		frequency is 850 Hz when it oscillates in a resistive medium for which the value of			
		damping/unit mass is 0.008 rad/sec under the action of an external periodic force/unit mass of amplitude 7 N/kg with tunable frequency.			
		Module – 2			
Q.3	a.	Discuss Neutral Surface and derive the expression for Bending moment	08	L2	CO1
Q.S	a.	interms of moment of Inertia and hence arrive at the expression for Bending	00		
		moment for rectangular and circular cross sections.			
	b.	What are Young's modulus, Rigidity modulus and Poisson's ratio? Derive the	07	L2	CO1
		relation between them.			
	c.	In single Cantilever experiment, find the Young's modulus of the rectangular bar	05	L3	CO5
		of breadth 2.5 cm and thickness 0.480 cm. Depression observed for the mass of			
		200 gm is 0.175 cm. Mass is suspended at a distance of 30 cm from the fixed end.			
0.4		OR	00	T 2	601
Q.4	a.	Discuss the stress-strain diagram. Explain the I-section girder and its	09	L2	CO1
	1.	engineering applications. What is Fatigue failure? Discuss the factors affecting on fatigue.	07	1.3	CO1
	b.	A metal wire of length 1.7 m is loaded and elongation of 2 mm is produced. If the	07	L2 L3	CO1
	c.	diameter of the wire is 1.2 mm, find the change in the diameter of the wire when	04	L3	COI
		elongated. (Given $\sigma = 0.24$).			
		Module – 3			<u> </u>
Q.5	a.	Discuss the variation of thermoelectric emf with temperature and obtain the	ΛQ	L2	CO2
Q.S	a.	relation between inversion temperature and neutral temperature.	00		COZ
	b.	What is thermocouple? Describe Seebeck effect and Peltier effect with their co-	08	L2	CO2
	"	efficients.	00	112	002
	c.	For Fe-Cu thermocouple it is observed that the thermo emf is zero, when one of	04	L2	CO3
		the junctions is at 25 °C and the other is at some higher temperature. If the neutral			-
		temperature is 275° C, calculate the higher temperature.			
L		e, was save one many temperature.	<u> </u>	L	

BPHYM102/202

		OR			
Q.6	a.	Describe the construction and working of thermoelectric generator. Discuss	08	L2	CO2
		its application in space program.			
	b.	What is thermo emf? Derive the expression for thermo emf in terms of T_1 and T_2 .	08	L2	CO ₂
	c.	The emf of thermocouple, one junction of which is kept at 0° C is given as,	04	L3	CO ₂
		$E = a(T - 273) + b(T - 273)^2$. Find the Peltier co-efficient.			
Module – 4					
Q.7	a.	Explain Joule-Thomson effect. Derive the expression for Joule-Thomson	08	L2	CO3
		co-efficient.			
	b.	Describe the process of liquefaction of oxygen by cascade process.	08	L2	CO3
	c.	In Joule-Thomson experiment, due to throttling, pressure of the fluid changed	04	L3	CO ₃
		from 30 MPa to 190 MPa. Joule Thomson co-efficient is $\frac{1}{5}\mu K/Pa$. Find the			
		change in temperature of the fluid.		l	

		OR			
Q.8	a.	Discuss the principle, construction and working of Lindey's air liquefier	08	L2	CO3
		with neat diagram.			
	b.	Discuss the principle, construction and working of liquefaction of Helium.	08	L2	CO3
		Mention the properties of liquid Helium.			
	c.	Explain briefly the applications of cryogenics in Tribology.	04	L3	CO3
		Module – 5			
Q.9	a.	With neat diagram, explain the principle, construction and working of scanning electron microscopy.	08	L2	CO ₄
	b.	Discuss the construction and working of X-Ray diffractometer and how the crystal size is determined by using Scherrer's equation.	08	L2	CO ₄
	c.	Calculate the energy of electrons that produce Bragg's diffraction of first order at	04	L3	CO
		30° when incident on crystal with interplanar spacing 1.96 $\overset{\circ}{A}$.			
		OR			
Q.10	a.	Describe the construction and working of Transmission electron	08	L2	CO
		microscope and give the advantages.			
	b.	With neat diagram, explain the principle, construction and working of Atomic	08	L2	CO
	_	Force Microscopy and give its applications. Determine the wavelength of X-rays for crystal size of 1.79 µm, peak width is	0.4	1.2	CO
	c.	0.9° and peak position 48°, for a cubic crystal. Given Scherrer's constant,	04	L3	CO
		K = 0.92.			
		2 of 2			
		Λ * *			