

BESCK104A/BESCKA104

First Semester B.E./B.Tech. Degree Examination, Dec.2023/Jan.2024 Introduction to Civil Engineering

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Explain briefly the scope of following specification of civil engineering:	08	L1	CO1
		i) Environmental Engineering			
		ii) Structural Engineering			
	b.	Write the composition of cement.	06	L1	CO1
	c.	What is brick? Write the classes of bricks.	06	L1	CO1
		OR			
Q.2	a.	Differentiate Reinforced and Prestressed Concrete.	08	L1	CO1
	b.	Write a note on Construction Chemicals.	06	L1	CO1
	c.	Enumerate Structural Elements of a building.	06	L1	CO1
	1	Module – 2			
Q.3	a.	Discuss on salient points on sustainable development goals.	08	L1	CO ₂
	b.	Write a note on Smart City Concept.	06	L1	CO2
	c.	Describe Solid Waste Management.	06	L1	CO ₂
		OR			
Q.4	a.	Write the key points to be considered while identifying the landfills sites.	08	L1	CO2
	b.	Explain Refuse, Reuse and Recycle concepts.	06	L1	CO ₂
	c.	Write a note on Energy Efficient buildings.	06	L1	CO ₂
	1	Module – 3	1		ı
Q.5	a.	Explain principles of superposition with a neat sketch.	04	L2	CO ₃
	b.	Determine the resultant of the system of forces shown in the Fig.Q5(b) below:	08	L3	CO3
	c.	Determine the resultant of non concurrent system of forces shown in the Fig.Q5(c) below:	08	L3	CO3
Q.6	a. b.	Fig.Q5(c) OR State and prove Varignon's theorem. Discuss resolution and composition of forces.	04 08	L2 L2	CO3 CO3
	ν.	Discuss resolution and composition of forces.	00	-14	000

BESCK104A/BESCKA104

	c.	Four forces of magnitude P, 100 N, 200 N, and 400 N are acting at a point	08	L3	CO3
		as shown in Fig.Q6(c). Determine the magnitude and direction of force 'P'			
		such that the force system is in equilibrium.			
		100 N 1 D			
		30			
		40			
		200 × 19 × 400 N			
		Fig.Q6(c) Module – 4	1		
Q.7	a.	Derive the centroid of a triangle having base 'b' and height 'h' from the	05	L2	CO4
Q. 7	a.		03	LL	CO4
	L.	first principles.	Λο	12	CO4
	b.	Locate the centroid of the shaded area shown in Fig.Q7(b) with respect to	08	L3	CO4
		reference axis. All dimensions are in mm.			
		†**			
		4-800-W400-W			
		Fig.Q7(b)			
	c.	Locate the centroid of the shaded area shown in Fig.Q7(c). All dimensions	07	L3	CO4
		are in mm.			
		₩ % 0 → H			
		10 mm			
		40			
		W-25—H			
		Fig.Q7(c)			
		OR			
0.8	Τ.		05	1.2	COA
Q.8	a.	Derive the centroid of a rectangle of base 'b' and height 'h'.	05	L2	CO4
	b.	Determine the centroid of the shaded area shown in the Fig.Q8(b) below.	08	L3	CO4
		All dimensions in mm.			
		200			
		Fig,Q8(b)			
	c.	Determine the centroid of the shaded area shown in the Fig.Q8(c).	07	L3	CO4
		All dimensions in mm.			
		¥-60-A ¥			
		12			
		150			
		10			
		¥—75 — → ↑			
		Fig.Q8(c)			

BESCK104A/BESCKA104

$\overline{\Omega}$		Module – 5			
Q.9	a.	State and prove parallel axis theorem.	05	L5	CO5
	b.	Derive the moment of inertia of a triangle of having base 'b' and height 'h'	05	L5	CO5
		from the first principle.			
	c.	Find the polar moment of inertia of the plane lamina shown in Fig.Q9(c)	10	L5	CO5
		about the point 'O' [I _{OZ}].			
		75			
		150mm			
		17000			
		100			
		0 H 300 mm H			
		Note: Radius of circle is 40mm.			
		Fig.Q9(c)			
		OR			
Q.10	a.	Derive Moment of Inertia of a circle from the first principle.	05	L5	CO5
	b.	Define the terms	05	L5	CO ₅
		i) Moment of Inertia ii) Radius of Gyration.	10	TF	COZ
	c.	Compute the MI of the area shown in Fig.Q10(c) about the axis AB. All dimensions are in mm only. Radius of circle is 20mm.	10	L5	CO5
		A Residence of the man only. Radius of their is 2011111.			
		A B			
		30			
		Fig.Q10(c)			
		* * * * *			
		Fig.Q10(c)			