

USN												BCIVC103/203
-----	--	--	--	--	--	--	--	--	--	--	--	--------------

First/Second Semester B.E./B.Tech. Degree Examination, June/July2024 **Engineering Mechanics**

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes.

	ı	Module – 1	M	L	C
Q.1	a.	 Explain the following: i) Principle of transmissibility of a force ii) Composition of forces and resolution of a force. 	6	L2	CO1
	b.	Determine the fourth unknown force in magnitude and direction so that the resultant \vec{R} acts as shown in the Fig.Q.1(b). R=500 N Fig.Q.1(b)	6	L3	CO1
	c.	Compute the resultant of the force system shown in the Fig.Q.1(c) with respect to point A. Also, locate the point where the resultant cuts the line AB. 200 N-m Fig.Q.1(c)	8	L3	CO1, 2
	4	OR			
Q.2	a.	State and prove principle of moments.	6	L2	CO1
	b.	Determine the unknown force \vec{F} and its direction so that the resultant \vec{R} of magnitude 72N acts along the positive direction of Y axis (\uparrow).	6	L3	CO1
		1 of 5			

shown ABC.	the the magnitude and direction of the resultant of the force system in the Fig.Q.2(c) with respect to point A of the equilateral triangle Side of triangle is 100mm. Also, find the location of the resultant the edge AC.	8	L3	CO1
	Fig.Q.2(c)			
O 3 a Define	Module – 2 e equilibrium. State the conditions for the equilibrium of coplanar	5	L2	CO2
	current force system ii) non-concurrent force system.	3	LZ	
	given string system, determine the tensions in the strings and the of for equilibrium. The strings and the strings and the strings and the strings are strings. Fig. Q.3(b)	7	L3	CO2
c. Determ	nine the reactions in the beam shown in the Fig.Q.3(c). A 40 kN-m 45	8	L3	CO2
Q.4 a. Disting	guish between:	6	L2	CO2
i) S	Statically determinate and indeterminate beams. Hinged support and fixed support.		114 	
(1, 2, 3) Weigh Weigh Diame	the the reactions at the contact points in the system shown $B, 4$). It of sphere $A = 50N$ It of sphere $A = 50mm$ Iter of sphere $A = 50mm$ Iter of sphere $B = 100mm$. Fig.Q.4(b) $A = 50mm$ A	8	L3	CO2

Q.5	а.	Determine the support reactions in the beam shown: 20 kN 20 kN 20 kN Fig.Q.4(c) Module - 3 Determine the forces in the members of the truss shown in the figure by the method of joints.	10	L3	CO2
		Determine the forces in the members of the truss shown in the figure by the method of joints.	10	L3	CO3
		method of joints. A Gm Gm Gm C A A A A A A A A A A A A A A A A A A	10	L3	CO3
	_	Fig.Q.5(a)			
	b.	State the laws of dry friction.	3	L2	CO3
Q.6	c.	A weight 500N just starts moving down a rough inclined plane supported by a force of 200N acting parallel to the plane and it is at the point of moving up the plane when pulled by a force of 300N parallel to the plane. Find the inclination of the plane and the coefficient of friction between the inclined plane and the weight.		L3	CO3
Q.0		OR	10	1.2	CO
	a.	Compute the forces in the members of the truss shown in the Fig.Q.6(a) by the method of joints. A Go Go Go Go GO FIG. Fig.Q.6(a)			CO3
	b.	Distinguish between angle of friction and angle of repose. Illustrate with a sketch.	3	L2	CO3
	c.	A uniform ladder 4m long weighing 300N is placed against a vertical wall with an angle 60° with the floor. The coefficient of friction between the wall and the ladder is 0.25 and that between floor and ladder is 0.35. The ladder has to support a load of 1500N at its top. Find the horizontal force P to be applied at the bottom of the ladder to just prevent slipping.		L3	CO3

		В	CIV	/C10	03/203
		Module – 4			
Q.7	a.	From first principles, derive the expression for locating the centroid of a semi-circular section.	6	L3	CO4
	b.	Illustrate: i) Parallel axis theorem ii) Perpendicular axis theorem.	4	L2	CO4
	c.	Determine the polar moment of inertia of the I-section shown in Fig.Q.7(c). All the dimensions are in mms.	10	L3	CO4
		Fig.Q.7(c)			
		OR O			
Q.8	a.	Derive the expression for the moment of inertia of a triangular section about its base. Hence, arrive at the expression about its parallel centroidal axis.	6	L3	CO4
	b.	Define and give the mathematical expressions for : i) Moment of inertia ii) Radius of gyration.	4	L2	CO4
	c.	Locate the centroid of the shaded lamina shown in the Fig.Q.8(c). Given that the centroid of the circle and the shaded lamina coinside.	10	L3	CO4
	Ğ	Iso Fig.Q.8(c)			
	1	Module – 5			
Q.9	a.	Derive the three fundamental equations of linear motion.	6	L2	CO1
	b.	Determine the least initial velocity with which a projectile is to be projected so that it clears a wall 4m height located at a distance of 5m, and strikes the horizontal plane through the foot of the wall at a distance 4m beyond the wall. The point of projection is at the same level as the foot of the wall.	6	L3	CO5
		life wall.			
		4 of 5			
		4013			
	Ö				

		ВС	CIV	/C103		
	c.	Compute the acceleration of the system and the tension in the string shown in the Fig.Q.9(c). Adopt D'Alembert's principle. W=800 N Fig.Q.9(c)	8	L3		
Q.10	a.	State and explain D'Alembert's principle. Give an example.	6	L2	T	
	b.	A ball is thrown vertically upwards with an initial velocity of 36m/s. After 2 seconds, another ball is thrown vertically upwards. What should be its initial velocity so that it crosses first ball at a height of 30m?	8	L3	1	
		angle is 45°. Determine the angle of projection to hit the target.	Fig.Q.9(c) OR Aprinciple. Give an example. ards with an initial velocity of 36m/s. After wn vertically upwards. What should be its first ball at a height of 30m? To on the horizontal plane and falls 12m short is 15°, while it overshots by 24m when the le of projection to hit the target.			
	Ğ					