

USN												BCHEC102/202
-----	--	--	--	--	--	--	--	--	--	--	--	--------------

First/Second Semester B.E./B.Tech. Degree Examination, Dec.2023/Jan.2024 Applied Chemistry for Civil Engineering Stream

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	What is Glass? Describe the preparation of Soda Lime Glass.	07	L2	CO1
	b.	Explain the various steps involved in the manufacture of cement by wet	06	L2	CO1
		process with a flow chart.			
	c.	Define Refractories. Write the properties and applications of refractory	07	L3	CO1
		materials.			
		OR			
Q.2	a.	What is Cement? Illustrate the process of setting and hardening of cement	07	L3	CO1
		with chemical reactions.			
	b.	Define alloys. Write the properties and applications of Iron and its alloys.	07	L3	CO1
	c.	Write a note on additives used in the manufacture of cement.	06	L3	CO ₁
		Module – 2			
Q.3	a.	Illustrate the construction and working of Methanol – Oxygen fuel cell.	06	L4	CO2
	b.	Define corrosion. Describe the electrochemical corrosion of steel in	07	L2	CO2
		concrete.			
	c.	What is anodizing? Explain anodizing of aluminium. Mention its	07	L2	CO ₂
		applications.			
		OR			
Q.4	a.	Define PV cell. Illustrate the construction and working of Photovoltaic	07	L3	CO ₂
		Cell.			
	b.	Explain differential metal and aeration corrosion with suitable examples.	07	L2	CO2
	c.	Explain how material selection and design can prevent corrosion.	06	L2	CO ₂
		Module – 3			
Q.5	a.	100 ml of a water sample required 20ml of 0.01 M EDTA for the titration	07	L3	CO ₃
		with Erichrome Black-T indicator, 100 ml of the same water sample after			
		boiling and filtering required 10 ml of 0.01 M EDTA. Calculate (i) Total			
		hardness (ii) Permanent Hardness (iii) Temporary Hardness of the sample.			
	b.	With a neat labeled diagram illustrate the softening of hard water by ion	07	L3	CO ₃
		exchange method.			
	c.	Explain the following size dependent properties of nanomaterials:	06	L2	CO ₃
		(i) Catalytic property (ii) Surface area			
	1	OR	1		
Q.6	a.	What is desalination? Explain desalination of brackish water by forward	07	L2	CO ₃
		osmosis.			
	b.	Define Nanomaterials. Demonstrate the synthesis of Nanomaterials by	07	L3	CO ₃
		Sol-gel method.			
	c.	Write a note on use of metal-oxide nano particles in the treatment of water.	06	L3	CO ₃

		Module – 4			
Q.7	a.	Calculate the number average molecular mass (M _n) and weight average	06	L3	CO4
		molecular mass (M _w) of a polymer in which 30% molecules have a			
	b.	molecular mass 20,000; 40% have 30,000 and the rest have 60,000. Define Fibers. Explain the synthesis, properties and applications of Nylon	07	L2	CO4
	υ.	Fibers.	07		CO4
	c.	Define Polymer Composites. Write the properties and applications of Fiber	07	L3	CO4
		Reinforced Polymer (FRP) and Geo-Polymer Concrete (GPC).			
		OR	1	1	ı
Q.8	a.	Explain the synthesis, properties and applications of Chloropolyvinyl chloride.	06	L2	CO ₄
	b.	Define Biodegradable Polymer. Explain the steps involved in the	07	L2	CO
		preparation of polylactic acid and mention the applications.	^=	T 2	C2
	c.	What are adhesives? Explain the synthesis, properties and applications of	07	L2	CO
		epoxy resin. Module – 5			
Q.9	a.	State Phase Rule. Explain the terms involved in the phase rule with	07	L2	CO
٧٠)	a.	examples.	3,	- 1-2	
	b.	With the help of a neat phase diagram, explain the Lead-Silver system.	07	L2	CO:
	c.	Describe the determination of pH of soil sample using pH sensors.	06	L2	CO
	_	OR			,
Q.10	a.	State and explain phase rule for two component system. Mention the use of	06	L2	CO
	ļ <u>.</u>	phase diagram.		T -	66
	b.	Illustrate the principle and instrumentation of conductometric sensors.	07	L2	CO
	c.	Explain the applications of potentiometric sensors in the estimation of iron.	07	L2	CO