

USN												BCHEC102/202
-----	--	--	--	--	--	--	--	--	--	--	--	--------------

First/Second Semester B.E./B.Tech. Degree Supplementary Examination, June/July 2024

Applied Chemistry for Civil Engineering Stream

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	What is glass? Describe the preparation of soda lime glass.	07	L2	CO1
	b.	Explain the testing of element by EDTA method.	07	L2	CO1
	c.	Write the properties and applications of stainless steel and duralumin.	06	L2	CO1
		OR			
Q.2	a.	Discuss the production of cement by wet process.	07	L2	CO1
	b.	Define Refractories. Mention the properties and applications of refractory	07	L2	CO1
	-	materials.	0.6	T 2	601
	c.	Explain the properties and applications of Aluminium and its alloys.	06	L2	CO ₁
	1	Module – 2			
Q.3	a.	Explain the electrochemical corrosion of steel in concrete.	07	L2	CO ₂
	b.	Illustrate the construction and working of photovoltaic cell.	07	L2	CO ₂
	c.	Discuss the following type of corrosion:	06	L2	CO ₂
		(i) Differential metal corrosion			
		(ii) Differential aeration corrosion			
	1	OR		1	
Q.4	a.	Define secondary batteries. Explain construction and working of Li-ion	07	L2	CO2
		battery.			
	b.	What is anodizing? Explain the anodizing of aluminium.	07	L2	CO ₂
	c.	Explain the construction and working of Methanol-Oxygen fuel cell.	06	L2	CO2
		Module – 3			
Q.5	a.	100 ml of sample water required 20 ml of 0.01 M EDTA for titration using	07	L2	CO3
		EBT indicator. In another experiment 100 ml of the sample of water was			
		boiled and precipitate was removed by filtration required 8.0 ml of 0.01 M			
		EDTA using EBT indicator. Calculate:			
		(i) Total Hardness			
	1	(ii) Permanent Hardness			
		(iii) Temporary Hardness			
	b.	What is desalination? Describe the desalination of water by electrodialysis	07	L2	CO3
		method with a neat labelled diagram.			
	c.	Explain the following size dependent properties of nanomaterials:	06	L2	CO3
		(i) Surface area (ii) Catalytic property			
		OR			
Q.6	a.	What are hard waters? Discuss the estimation of total hardness of using	07	L2	CO3
		EDTA solution.			
	b.	Define COD. In a COD test, 28 cm ³ and 16 cm ³ of 0.05 N FAS solutions	07	L2	CO3
		are required for a blank and sample titration respectively. The volume of			
		sample used was 25 cm ³ . Find the COD of a sample solution.			
	c.	Define nanomaterial. Explain the synthesis of nanomaterials by sol-gel	06	L2	CO3
		method.			
		1 of 2			

		ВС	CHE	C1
		Module – 4		
Q.7	a.	Describe the synthesis, properties and applications of polyethylene.	07	L
	b.	Define biodegradable polymer. Explain the synthesis and applications of		L
	<u> </u>	polylactic acid.		
	c.	What are polymer composites? Mention the properties and application of	06	L
	<u> Ш</u>	FRP (Fiber Reinforced Polymer). OR		
Q.8	a.	What are adhesives? Give the synthesis, properties and applications of	07	L
~. 0		epoxy resin.	0,	
	b.	A polymer sample contains 50 molecules of molecular mass 1000 g/mols,	07	L
		100 molecules of molecular mass 2000 g/mols and 150 molecules of		
		molecular mass 3000 g/mols. Calculate the number average and weight		
	c.	average molecular masses of the polymer. Mention the properties and applications of geopolymer concrete.	06	L
	<u> </u>	Module – 5	1 00	1111
Q.9	a.	Describe the Lead-Silver system with the help of neat phase diagram.	07	L
	b.	Describe the instrumentation and applications of conductometric sensors in	07	L
	<u> </u>	the estimation of acid mixture.	0	_
	c.	Describe the estimation of FAS using potentiometric sensors.	06	L
Q.10	a.	OR Illustrate the principle, instrumentation and working of potentiometric	07	L
Z.10	"	sensors.	0,	1
	b.	Define the following terms with examples:	07	L
	<u> </u>	(i) Phase (ii) Component (iii) Degree of freedom Explain the determination of p ^H of soil sample using p ^H sensors.		
	c.	*****	06	L
	Ĝ			